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Abstract
Amonton’s law states that the sliding friction force increases linearly with the load. We show
that this result is expected for stiff enough solids, even when the adhesional interaction between
the solids is included in the analysis. As a function of the magnitude of the elastic modulus E ,
one can distinguish between three regions: (a) for E > E2, the area of real contact (and the
friction force) depends linearly on the load, (b) for E1 < E < E2, the area of real contact
depends nonlinearly on the load but vanishes for zero load, and (c) for E < E1 the area of real
contact depends nonlinearly on the load and is non-vanishing at zero load. In this last case a
finite pull-off force is necessary in order to separate the solids. Based on molecular dynamics
calculations, we also discuss the pressure dependence of the frictional shear stress for polymers.
We show that the frictional shear stress is independent of the normal pressure p0 as long as p0 is
much smaller than the adhesional pressure pad, which depends on the atomic corrugation of the
solid surfaces in the sliding interface. Finally, we discuss the origin of why the contact area
between a soft elastic solid (e.g. rubber) and a flat substrate decreases from the JKR (adhesive
contact) limit at zero or small sliding velocities, to the Hertz (non-adhesive) limit at high sliding
velocities.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Sliding friction represents a highly complex topic of great
practical importance [1]. For many sliding systems it is found
that the friction force Ff is proportional to the load or normal
force FN (see [2, 3]), i.e.

Ff = μFN.

This friction ‘law’ is usually explained by assuming that,
because of the surface roughness, which exists on nearly all
solid surfaces, the area of real (atomic) contact is proportional
to the load [3], i.e.

A = αFN

and the stress (or pressure) distribution in the contact areas is
independent of the load. The friction force can then be written
as

Ff = σf A = σfαFN

where σf is the (average) frictional shear stress in the area
of real contact. Note that, even if the frictional shear stress
σf depends on the local pressure in the contact area, as long
as this pressure distribution is independent of the load, the
friction will not depend on the detailed pressure distribution
in the contact areas or on the pressure dependence of σf, and
μ = σfα will be independent of the load [4]. This is usually
true even for viscoelastic solids such as rubber sliding on hard
rough substrates, where the friction is determined not just by

0953-8984/08/395006+11$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/39/395006
http://stacks.iop.org/JPhysCM/20/395006


J. Phys.: Condens. Matter 20 (2008) 395006 B N J Persson et al

-40

-36

-32

-28

-24

4 6 8 10
log q (1/m)

H=0.6

H=0.8

lo
g 

C
 (

m
   

 )
-4

Figure 1. The logarithm (with 10 as the base) of the surface
roughness power spectrum C(q) as a function of the logarithm of the
wavevector for two self-affine fractal surfaces with the Hurst
exponent H = 0.8 and 0.6. Both surfaces have the same surface area
≈1.37A0 (where A0 is the nominal contact area) but the
root-mean-square roughness differs: hrms = 0.66 μm and 1.01 μm
for the surfaces with H = 0.6 and 0.8, respectively.

the area of real contact, but it depends on the deformation of
the rubber on all length scales [5]8.

It has been suggested that the origin of Amonton’s law
is an approximately linear dependence of the frictional shear
stress on the normal stress [6]. However, a linear dependence is
not always observed in computer simulations, and in any case,
as mentioned above, the actual dependence of the frictional
shear stress on the normal stress or pressure is irrelevant in
most cases when surfaces roughness occur on many different
length scales.

The assumption that the area of real contact is proportional
to the load is usually explained by assuming that plastic flow
occurs in the asperity contact regions so that the pressure in
the contact regions is determined by the indentation hardness
of the solids. However, for very smooth surfaces, or for soft
elastic solids such as rubber or gelatin, it is unlikely that
the local pressure in the asperity contact regions reaches the
penetration hardness or rupture stress. In these cases one
expects purely elastic deformation to occur everywhere and
it is then nontrivial to understand why the area of contact is
proportional to the load since the contact area between a single

8 When a rubber block is sliding on a hard, rough substrate, the substrate
asperities will give rise to time-dependent deformations of the rubber surface
which will result in transfer of translational energy into heat via the internal
friction of the rubber. For surfaces with roughness on many length scales, it
is necessary to add the energy dissipation which results from the asperities
on all length scales. With respect to the most long-wavelength roughness
the rubber may appear to be in complete contact with the substrate but at
higher magnification, where shorter-wavelength roughness is observed, the
relative contact area A/A0 (where A0 is the nominal contact area) is usually
much smaller than unity. When A/A0 � 1 the contact area is proportional
to the load, and since the short-wavelength roughness (where A/A0 � 1)
usually gives the dominant contribution to the rubber friction, one expects the
friction force to be (nearly) proportional to the load FN. In real situations
this proportionality is not always observed, but the reason for this is usually
due to other effects, such as frictional heating which depends on the load.
Rubber friction theories (such as [5]) built on the Greenwood–Williamson
contact mechanics theory do find a load dependence of the rubber friction, but
in our opinion this is due to the failure of the Greenwood–Williamson theory
to describe correctly the contact mechanics when roughness occurs on many
different length scales (see appendix A and [26]).

spherical bump asperity and a flat surface is (in the absence of
adhesion) given by the Hertz formula and depends nonlinearly
on the load as A ∝ F2/3

N . However, even in these cases
it has been shown that for non-adhesive interaction between
randomly rough surfaces, A ∝ FN (see appendix A). In
this paper we will show that the same result holds in most
cases even when the adhesive interaction between the solids
is included in the analysis. Based on molecular dynamics
calculations, we also discuss the pressure dependence of the
frictional shear stress. We show that the frictional shear stress
is independent of the normal pressure p0 as long as p0 is much
smaller than the adhesional pressure pad, which depends on
the atomic corrugation of the sliding interface. Finally, we
discuss the origin of why the contact area between a soft elastic
solid (e.g. rubber) and a flat substrate decreases from the JKR
(adhesive contact) limit at zero or small sliding velocities to the
Hertz (non-adhesive) limit at high enough sliding velocities.

2. Contact mechanics for randomly rough (self-affine
fractal) surfaces

We will study the contact between a hard, randomly rough
substrate and an elastic solid with a flat surface. We
consider two rough self-affine fractal surfaces with the fractal
dimensions Df = 2.2 and 2.4, corresponding to the Hurst
exponents (H = 3 − Df) H = 0.8 and 0.6, respectively.
The power spectra C(q) (as a function of the wavevector q)
of the two surfaces are shown in figure 1. Both surfaces
have the surface area ≈1.37A0 (where A0 is the nominal or
apparent contact area), but the root-mean-square roughness
differs: hrms = 0.66 μm and 1.01 μm for the surfaces with
H = 0.6 and 0.8, respectively. We will present results both
with and without adhesion. For the calculations with adhesion
we assume that the interfacial binding energy (per unit surface
area) between flat surfaces �γ = γ1 + γ2 − γ12 = 0.05 J m−2,
as is typical for solids which interact (mainly) by the van der
Waals interaction.

We use the theory developed in [7] to calculate how the
area of real contact A depends on the applied pressure p0 and
the magnification ζ . Here the magnification ζ = L/λ where
L is some reference length which could be the linear size of
the system, and λ the resolution, i.e. the wavelength of the
shortest roughness component included in the analysis. We
also study how the effective interfacial binding energy (per unit
nominal surface area) γeff(ζ ) depends on the magnification.
Note that the pull-off force (the force necessary to separate the
two solid bodies) will be non-vanishing only if the macroscopic
interfacial binding energy γeff(1) is non-zero.

The theory of adhesion presented in [7] is based on a
study of how the effective interfacial energy γeff(ζ ) and the
stress distribution at the block–substrate interface depends on
the magnification ζ . The effective interfacial energy is given
by

γeff(ζ )A∗(ζ ) = �γ A∗(ζ1) − Uel,

where A∗(ζ ) is the contact area when the interface is studied at
the magnification ζ , which in general is larger than the contact
area A(ζ ) projected on the xy plane. A∗(ζ1) is the contact area
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at the highest (atomic) resolution ζ1 and �γ = γ1 + γ2 − γ12

is the change in the interfacial energy (per unit area) as the
two solids with flat surfaces are brought together. The elastic
energy stored in the asperity contact regions is denoted by Uel.
The physical origin of the equation above is that the effective
interfacial free energy γeff(ζ )A∗(ζ ) is equal to the free energy
associated with the bonding between the two solids in the area
of real contact, �γ A∗(ζ1), minus the stored elastic energy Uel,
which is given back during pull-off, thus helping to break the
wall–wall atomic bonds in the area of real contact.

We assume first that the elastic modulus E = 15 MPa and
the substrate surface has the power spectra shown in figure 1
with the Hurst exponent H = 0.8. In figure 2(a) we show
the area of real contact A (projected on the xy plane) at
the highest magnification ζ1 (in units of the nominal contact
area A0) as a function of the nominal squeezing pressure.
Figures 2(b) and (c) show the area of real contact A(ζ ) and the
effective interfacial binding energy (per unit surface area) (in
units of �γ ) as a function of the magnification ζ . Results are
shown both without adhesion and with adhesion using �γ =
0.05 J m−2. Note that in this case the area of real (atomic)
contact depends linearly on the squeezing pressure p0 (which
is proportional to the load or normal force FN, p0 = FN/A0),
while the macroscopic interfacial binding energy vanishes. We
have performed a large set of similar calculations for other
values of the elastic modulus and observed the same behavior
as in figure 2 as long as E > E2 ≈ 10 MPa.

For E < E1 ≈ 5 MPa we find instead that the
macroscopic interfacial energy and the area of real contact
at zero load are both non-vanishing. This is illustrated in
figure 3 when the elastic modulus E = 3 MPa. For E1 <

E < E2 the macroscopic interfacial energy and the area of
real contact at zero load are both vanishing but the area of
real contact depends nonlinearly on the pressure p0 for the
(nominal) pressures 0 < p0 < 0.1 MPa we study (see figure 4).

We have observed the same general behavior as described
above for other self-affine fractal surfaces. As an illustration,
in figure 5 we show results for a surface with the fractal
dimension Df = 2.4 with the power spectrum given in figure 1.
This surface has the same total area as the surface with Df =
2.2, but since the roughness at short wavelengths increases
and the roughness at long wavelengths decreases when the
fractal dimension increases (at a constant total surface area),
the adhesional interaction will be much stronger for the surface
with Df = 2.4. Indeed, for Df = 2.4 the (projected)
contact area (at zero load) A ≈ 0.95A0 when the modulus
E ≈ 50 MPa, while for the surface with Df = 2.2 the same
contact area is obtained for a much softer elastic solid, when
the modulus E ≈ 1 MPa.

Figure 5 shows results for the fractal dimension Df = 2.4
and the elastic modulus E = 120 MPa. The area of real contact
((a) and (b)), and the effective interfacial binding energy (per
unit surface area) (c) exhibit the same general behavior as when
the fractal dimension Df = 2.2 and E = 15 MPa (see figure 2).

The results obtained above are summarized in figure 6
which shows (schematically) the relation between the area of
real contact A(ζ1) and the normal pressure p0 = FN/A0, as
a function of the elastic modulus. In the figure ‘nonlinear’

 

Figure 2. (a) The area of real contact A (in units of the nominal
contact area A0) at the highest magnification ζ1 (=106) as a function
of the nominal squeezing pressure. (b) The area of real contact A(ζ )
(for the pressure p = 0.1 MPa) and (c) the effective interfacial
binding energy (per unit surface area) (in units of
�γ = γ1 + γ2 − γ12) as a function of the logarithm (with 10 as the
base) of the magnification ζ . Results are shown both without
adhesion and with adhesion using �γ = 0.05 J m−2. For the elastic
modulus E = 15 MPa and the surface with the power spectrum
shown in figure 1 with the Hurst exponent H = 0.8.

refer to the fact that the area of contact depends nonlinearly
on the squeezing pressure in the pressure range studied above.
If the studied pressure range is made smaller an (approximate)
linearity may be observed between A and p0. In general, as
long as the increase in the contact area is less than ∼10% of
the nominal contact area, the relation between A and p0 will
be approximately linear.

In figure 7 we show the ratio αad/α between the slopes
of the relation (in the linear region) between the contact area A
and the applied normal force FN with the adhesional interaction
included (αad) and without the adhesional interaction (α). We
show results for the self-affine fractal surfaces (with the Hurst
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Figure 3. (a) The area of real contact A (in units of the nominal
contact area A0) at the highest magnification ζ1 (=106) as a function
of the nominal squeezing pressure. (b) The area of real contact A(ζ )
(for the pressure p = 0.1 MPa) and (c) the effective interfacial
binding energy (per unit surface area) (in units of
�γ = γ1 + γ2 − γ12) as a function of the logarithm (with 10 as the
base) of the magnification ζ . Results are shown both with and
without adhesion. For the elastic modulus E = 3 MPa and the
surface with the power spectrum shown in figure 1 with the Hurst
exponent H = 0.8.

exponent H = 0.6 and 0.8) with the power spectra shown in
figure 1.

We may state qualitatively that, when decreasing the
magnification ζ , if γeff(ζ ) vanishes before reaching the
macroscopic scale (ζ = 1), the contact mechanics at the
macroscopic scale will appear elastic and non-adhesive, and
the contact area will be proportional to the load as expected
for elastic, non-adhesive contact between randomly rough
surfaces.

The contact mechanics model used above is based on
continuum mechanics, and the only information related to
the adhesive interaction between the surfaces is the interfacial
binding energy (per unit area) γ for flat surfaces. In reality,

Figure 4. (a) The area of real contact A (in units of the nominal
contact area A0) at the highest magnification ζ1(=106) as a function
of the nominal squeezing pressure. (b) The area of real contact A(ζ )
(for the pressure p = 0.1 MPa) and (c) the effective interfacial
binding energy (per unit surface area) (in units of
�γ = γ1 + γ2 − γ12) as a function of the logarithm (with 10 as the
base) of the magnification ζ . Results are shown both with and
without adhesion. For the elastic modulus E = 7 MPa and the
surface with the power spectrum shown in figure 1 with the Hurst
exponent H = 0.8.

the interaction between two solids depends on the (atom–
atom) interaction potential across the two surfaces, and at
least one more parameter, a length a of the order of an
atomic distance, is necessary in order to fully characterize the
interaction between the surfaces at the atomistic level. This is
well known in the context of the adhesive contact between a
spherical asperity (with a radius R) and a flat surface, where
different models such as the JKR [8] or DMT [9] models (and
numerical calculations using atomistic models) have been used
to describe the contact between solids with different elastic
(and adhesive) properties, and different tip radius R. However,
for the question which we have addressed above, namely the
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Figure 5. (a) The area of real contact A (in units of the nominal
contact area A0) at the highest magnification ζ1(=106) as a function
of the nominal squeezing pressure. (b) The area of real contact A(ζ )
(for the pressure p = 0.1 MPa) and (c) the effective interfacial
binding energy (per unit surface area) (in units of
�γ = γ1 + γ2 − γ12) as a function of the logarithm (with 10 as the
base) of the magnification ζ . Results are shown both with and
without adhesion. For the elastic modulus E = 120 MPa and the
surface with the power spectrum shown in figure 1 with the Hurst
exponent H = 0.6.

load dependence of the friction coefficient, the nature of the
contact at the atomistic level is, in most cases, unimportant for
the following reasons: first, note that for an asperity (radius R)
in contact with a flat surface, the nature of the adhesive contact
can be characterized by the Tabor number [10]

� =
(

Rγ 2

E2a3

)1/3

.

When � � 1 the JKR limit is obtained while the DMT
limit is obtained for � � 1. For � � 1 (JKR limit) the
contact mechanics does not depend on the length parameter

Figure 6. Relation between the area of real contact A(ζ1) and the
squeezing pressure p0 as a function of the elastic modulus
(schematic).

Figure 7. The ratio αad/α between the slopes of the relation between
the contact area A and the applied normal force FN with the
adhesional interaction included (αad) and without the adhesional
interaction (α). The adhesional interaction is characterized by the
interfacial binding energy (per unit area)
�γ = γ1 + γ2 − γ12 = 0.05 J m−2. For self-affine fractal surfaces
(with the Hurst exponent H = 0.6 and 0.8) with the power spectra
shown in figure 1.

a characterizing the wall–wall interaction potential, but it
depends only on the work of adhesion γ . However, for � < 5,
the adhesive bond depends also on the bond length parameter
a (and on the detailed form of the interaction potential).
Now, let us consider a rough surface at the magnification ζ .
At this magnification we observe asperities with the typical
curvature 1/R ≈ hrms(ζ )q2, where q = q0ζ and where
hrms(ζ ) is the root-mean-square roughness due to the surface
roughness with wavelength below 2π/q . For a self-affine
fractal surface we have hrms(ζ ) ≈ h0

rmsζ
−H , where h0

rms =
hrms(1) is the macroscopic rms roughness amplitude. Thus, at
the magnification ζ :

�(ζ ) =
(

γ 2ζ H−2

E2q2
0 h0

rmsa
3

)1/3

∼ ζ (H−2)/3.

Since for a self-affine fractal surface 0 � H � 1, �(ζ )

increases with decreasing magnification, and typically �(ζ ) �
1 before reaching the macroscopic length scale. Thus, at
low enough resolution the detailed form of the wall–wall
interaction potential can usually be neglected.

When the macroscopic interfacial binding energy (per unit
area), γeff, is non-vanishing it is necessary to take into account
the macroscopic shape of the object as this influences the
nominal contact area A0. The most well-defined configuration
(used in most model studies) consists of an elastic sphere in
contact with a nominally flat substrate. If the effective elastic
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Figure 8. The relation, after 200 nm run-in distance, between the
frictional shear stress and the normal pressure for C100H202 polymer
slab sliding on C100H202 polymer slab. Sliding velocity v = 10 m s−1,
and background temperature T = 300 K. The solid line is a linear fit
to the data σf = σc + βp0 with σc = 31.5 MPa and β = 0.07.

modulus is not too high the contact mechanics can be described
with the JKR theory [8]. The nominal contact region will be a
circular region with the radius

r0 =
(

R

E∗

)1/3 (
F1/2

a + (FN + Fa)
1/2

)2/3
(1)

where E∗ = E/(1 − ν2) and where the pull-off force

Fa = 3
2π Rγeff. (2)

In this equation γeff = γeff(L/r0) is the (macroscopic)
effective interfacial binding energy (per unit area) for the case
when only surface roughness components of wavelength λ <

r0 are included when calculating γeff. Thus, γeff(L/r0) will
depend on the radius r0 and equation (1) must be solved self-
consistently together with the expression for γeff(ζ ) given by
the contact mechanics theory described above. The solution to
these equations gives the radius r0 of the contact region and the
macroscopic interfacial binding energy (per unit area) γeff.

3. Dependence of the frictional shear stress σf on the
pressure p

As stated earlier, the relation Ff ∝ FN usually holds
independent of the detailed dependence of the frictional shear
stress σf(p) on the local (squeezing) pressure p(x). However,
this is only true as long as the area of real contact depends
linearly on the load. For elastically soft solids (e.g. rubber
or gelatin), or for hard solids with extremely smooth surfaces,
nearly complete contact may occur in the nominal contact
region, and in this case Amonton’s law may no longer hold.
If A = A0 the friction force Ff will depend on the pressure
distribution in the contact area and we may write

Ff =
∫

A0

d2x σf(p(x)).

In particular, if σf can be considered as pressure-independent,
then the friction force Ff = σf A0. This expression may still
depend on the normal load FN since the nominal contact area

 

Figure 9. The velocity profile and the number density of bead units
as a function of the distance between the two solid walls. For
C100H202 polymer slab sliding at the sliding velocity v = 10 m s−1,
background temperature T = 300 K and normal pressure
p = 10 MPa. Note the strong layering and that most of the slip
occurs between the most central layer of lubricant molecules and the
two nearby layers.

A0 will, in general, increase with increasing load, but usually
not linearly so that Amonton’s law will not hold in this case.

Here we will briefly discuss the pressure dependence of σf

for polymers sliding on polymers. For a more detailed study,
see [11].

Figure 8 shows the relation, after a 200 nm run-in distance,
between the frictional shear stress, σf, and the normal pressure,
p0, for a ∼3 nm thick C100H202 polymer slab confined between
two flat ‘metal’ surfaces, when the polymer–metal bond is
so strong that no slip occurs at the polymer–metal interfaces.
The solid line is a linear fit to the data σf = σc + βp0

with σc = 31.5 MPa and β = 0.07. The sliding velocity
v = 10 m s−1, but even at this relatively high sliding velocity
the frictional energy dissipation in the polymer film gives rise
to negligible temperature increase. The reason for this is
that the polymer film is very thin, and that the wall atoms
are coupled to a thermostat (at temperature T = 300 K) so
that the excess (friction-induced) thermal energy is effectively
removed from the system, leading to the negligible temperature
increase. We have also performed calculations for the sliding
velocity v = 1 m s−1 but the results are nearly the same as for
v = 10 m s−1. The value for β found above is very similar to
the value found by Rottler and Robbins [12] for the pressure
dependence of the yield stress and the friction of models of
glassy atomic solids and glassy polymer solids.

That the slip occurs inside the polymer film, rather than
at the polymer–metal interfaces, is illustrated in figure 9 which
shows the velocity profile and the number density of bead units
as a function of the distance between the two solid walls. Note
the strong layering and that most of the slip occurs between the
most central layer of lubricant molecules and the two nearby
layers.

The results presented above for polymer sliding on
polymer is in good agreement with experimental data. Thus,
Whitten et al [13] have studied the shear stress when a
spherical glass indenter is sliding on different types of
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polymers. It is likely that polymer molecules will be
transferred to the glass surface so that the sliding interface will
be polymer against polymer. The experimental data for the
frictional shear stress σf as a function of the normal stress or
pressure p0 was fitted to a linear relation

σf = σc + βp0. (3)

For four different polymers (poly(methyl methacrylate)
(PMMA), polystyrene (PS), poly(phenylene oxide) (PPO) and
polycarbonate (PC)) it was found that σc = 39, 25, 20 and
17 MPa (average 25 MPa) while the parameter β = 0.10,
0.13, 0.05 and 0.06 (average 0.09). For the C100 system we
find σc = 31.5 MPa and β = 0.07 which are similar to the
experimental results.

The basic physics behind the pressure dependence of
the frictional shear stress can be understood as follows [14].
During slip the separation between the atoms or molecules at
the sliding interface increases by a small amount �h. This
expansion makes work against the applied pressure p0 given
by f �h = p0a2�h where a is the block adsorbate constant.
In addition, the binding energy will decrease in the on-top
position because of the reduced number of nearest-neighbor
substrate atoms (or molecules). If we denote this energy
difference by ε0 > 0 we get the energy difference (per unit
block atom or molecule)

�E = ε0 + p0a2�h.

If this increase in energy between on-top and bridge positions
is fully lost into heat during the slip downhill from the on-top
to the bridge position, then

σfa
2b = �E

where b is the substrate constant, giving

σf = ε0

a2b
+ �h

b
p0

or
σf = σc + βp0 = β(pad + p0) (4)

with σc = ε0/(a2b), pad = ε0/(a2�h) and β = �h/b.
Note that even if the frictional stress depends linearly on

the pressure σf = σc + βp0 the friction force

Ff = σc A0 + βp0 A0 = σc A0 + β FN

will, in general, depend nonlinearly on the load because the
area of real contact A0 will usually depend nonlinearly on the
load, e.g. for a spherical lens against a flat it will be given by
the JKR theory (see equation (1)).

In the analytical calculation presented above we have
neglected the influence of temperature (or thermal fluctuations)
on the process of going over the barrier. That is, it was
assumed that the external applied tangential force (or stress)
alone pulls the system over the lateral pinning barriers, and
that this happens everywhere simultaneously. At the high
sliding velocities used in our MD simulation, the thermal
effect should be rather unimportant. However, for small

sliding velocities, thermal fluctuations will be very important.
In this case slip will not occur everywhere simultaneously,
but small nanometer-sized interfacial regions of linear size
D will be individually pinned and perform stress-aided
thermally induced jumps from one pinned state to another
(local interfacial rearrangement processes). (Note that thermal
effects can only become important for small (nanometer-
sized D) regions, since simultaneous going-over-the-barrier
everywhere requires infinitely large energy for an infinite
system, except, perhaps for an incommensurate interface.)
This process has been studied in detail both theoretically and
experimentally [15–20].

4. Sliding-induced reduction in adhesion

As shown in section 2, surface roughness can strongly reduce
the adhesion between solids, even if the roughness is so small
that (nearly) complete contact occurs in the nominal contact
area. The reason for this is that, for rough surfaces, the surfaces
of the solids must bend at the interface in order to make atomic
contact. This deformation results in elastic energy stored at the
interface, which is (partly) given back during pull-off, resulting
in a strong roughness-induced reduction in the pull-off force.

Recent experiments performed with solids with perfectly
smooth surfaces indicate that sliding motion may also reduce
the (macroscopic) adhesive interaction between solids. In
the experiments a silicon rubber (PDMS) lens was slid on a
perfectly smooth silicon wafer surface covered by inert grafted
monolayer films [21, 22]. In stationary contact, the contact
area was enhanced because of the adhesional interaction, with
the radius of the circular contact region given by JKR theory
(see equation (1)). During sliding the contact area gradually
decreased with increasing sliding velocity, and at the sliding
velocity where the frictional shear stress was maximal (v ≈
1 cm s−1), the radius of the contact area was equal to that
predicted by the Hertz (non-adhesive) contact theory. Two
explanations for this phenomena have been suggested.

Wu-Bavouzet et al [22] have suggested that, during sliding
at high enough velocity, almost all the adhesive bonds between
the rubber and the substrate are broken. However, the
measured work of adhesion (about 0.04 J m−2) is consistent
with the weak van der Waals interaction, which is rather long
ranged (the interaction energy per unit surface area between
the surfaces falls of as 1/d2 with the separation d between
the surfaces) and since the equilibrium separation is of the
order of d ≈ 4 Å the separation must increase with at least a
nanometer for the wall–wall interaction to become negligible.
But in this case the sliding friction force should be very
small. However, the experiment indicates a maximum in the
frictional shear stress when v ≈ 1 cm s−1, when the contact
is already Hertzian-like. Thus, it is very unlikely that breaking
adhesive bonds is the origin of the observed transition from
JKR (adhesive) contact to Hertz (non-adhesive) contact.

A second possible origin of the reduction in adhesion at
high enough sliding velocity is related to the build up of elastic
deformation energy, due to the frictional shear stress at the
sliding interface, which may affect the adhesional interaction
in a very similar way as surface roughness. Thus, during
sliding elastic energy is ‘stored’ at the interface, which helps

7
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to break the adhesive bonds, making the contact essentially
non-adhesive at high enough sliding velocity. There are two
types of elastic energy induced by the friction: one in a thin
(nanometer-thick) layer close to the sliding interface and one
associated with the macroscopic shear stress which extends
into the rubber lens a distance of the order of the radius of the
contact area.

Let us consider the first source of elastic energy. When
a rubber lens is sliding on a flat substrate small regions
(stress domains) of linear size D will perform ‘jumps’ between
pinned states. This will result in elastic energy stored at the
interface. Neglecting temperature effects the average elastic
energy stored in one stress domain will be of the order of kx2/2
where the effective spring constant k ≈ DE (where E is the
absolute value of the rubber elastic modulus at the frequency
associated with the stick–slip motion of the stress domain) and
where the displacement x is given by kx ≈ σp D2 where σp

is the depinning stress. Thus the elastic energy stored per unit
area is γ ∗ = (σp D2)2/(2k D2) = σ 2

p D/(2E). In a typical
case D ≈ 30 nm, σp ≈ 1 MPa and E ≈ 10 MPa giving
γ ∗ ≈ 0.001 J m−2, which is completely negligible compared
to the interfacial binding energy �γ ≈ 0.05 J m−2. Taking
into account thermal effects will make γ ∗ even smaller. Thus
this source of elastic energy will have a negligible influence on
the macroscopic contact radius.

Let us now consider the influence of the macroscopic
frictional shear stress at the sliding interface on the reduction
in contact area. This mechanism has already been studied by
Savkoor et al [23]. The total energy

U = E∗
(

h2r0 − 2

3

hr 3
0

R
+ 1

5

r 5
0

R2

)
− πr 2

0 �γ + U1. (5)

The first and second terms in this expression represent the
elastic energy [30, 31] due to the vertical deformations of the
ball, and the adhesional binding energy at the ball–substrate
interface, respectively. The last term U1 is the elastic energy
arising from the shear deformations of the ball. It is shown in
appendix B that

U1 = αE∗δ2r0 (6)

where δ is the displacement (of the center of mass) of the
contact area due to the tangential force F‖ = σfπr 2

0 . Thus
we get

FN = ∂U

∂h
= E∗

(
2hr0 − 2

3

r 3
0

R

)
, (7)

F‖ = ∂U

∂δ
= 2αE∗r0δ. (8)

Note that FN is negative during pull-off (where h < 0). The
contact radius r0 is obtained by minimizing U with respect to
the radius r0 which gives

∂U

∂r0
= E∗

(
h2 − 2

hr 2
0

R
+ r 4

0

R2

)
−2πr0�γ +αE∗δ2 = 0. (9)

Using (7)–(9) gives after some simplifications

r 3
0 = 3R

4E∗

(
2Fa + FN + 2

[
Fa FN + F2

a − 1

4α
F2

‖

]1/2
)

(10)

Figure 10. The ratio of the contact areas during sliding and in
stationary contact as a function of velocity for PDMS (E = 4.8 MPa,
�γ = 0.042 J m−2) against a self-assembled monolayer. As the
sliding velocity increases, the contact area drops from the JKR
prediction (upper dashed line) to the Hertzian prediction (lower
dashed line). The circle and square data points are the measured and
calculated (using equation (13)) results, respectively. The normal
load FN = 0.048 N. Experimental data from [21].

where Fa = 3π R�γ/2. Equation (10) is only valid as long as
the term in the [· · ·] is non-negative, i.e. until

F‖ = 2
√

α
(
Fa FN + F2

a

)1/2
. (11)

In the experiment by Vorvolakos et al [21], FN = 0.048 N
and using R = 0.25 cm and �γ = 0.042 J m−2 gives
Fa ≈ 5.0 × 10−4 N.

When Fa = F‖ = 0 we have the Hertz contact limiting
case where the radius of the contact area

r 3
H = 3RFN

4E∗ . (12)

For the parameters given above we get rH ≈ 2.4 × 10−4 m.
Using (12) we can therefore write (10) as

(
r0

rH

)3

= 1 + 2
Fa

FN
+ 2

[
Fa

FN
+

(
Fa

FN

)2

− 1

4α

(
F‖
FN

)2
]1/2

.

(13)
At low sliding velocities, where F‖ ≈ 0, we obtain the JKR
contact radius(

rJKR

rH

)3

= 1 + 2
Fa

FN
+ 2

[
Fa

FN
+

(
Fa

FN

)2
]1/2

≈ 1 + 2

(
Fa

FN

)1/2

(14)

where we have used that in the present case Fa/FN � 1. The
contact radius rc at the limit when (11) is obeyed is given by

(
rc

rH

)3

= 1 + 2
Fa

FN
.

Note that in our case rJKR ≈ 1.07rH while rc ≈ 1.007rH,
i.e. when the velocity has increased to the point where the
friction force F‖ obeys (11), then the contact radius is nearly
at its Hertzian value. In figure 10 we show the calculated

8
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Figure 11. The measured frictional shear stress as a function of
velocity for PDMS (E = 4.8 MPa, �γ = 0.042 J m−2) against a
self-assembled monolayer. The normal load FN = 0.048 N. Based on
experimental data from [21].

(from (13) and (14)) ratio A/AJKR as a function of the sliding
velocity. In the calculation we have assumed that the frictional
shear stress is constant in the ball–substrate contact area which
gives α ≈ 0.67 (see appendix B). The lower dashed line in
figure 10 is given by A/AJKR = AH/AJKR ≈ 0.87. In the
calculation we have used the measured friction force F‖ (see
figure 11). Note that the theory prediction does not agree with
the experimental data. We believe that the reason for this is
that the frictional shear stress is not constant in the contact
area as assumed above, but reduced in the region where the
normal stress is tensile. The basic idea is that the rubber at the
sliding interface can be in two different states with nearly the
same adhesive binding to the substrate, but where the rubber
experiences very different pinning potentials. Thus, in one
state the rubber molecules at the interface can rearrange or
adjust to the corrugated substrate potential to give a state with
‘strong’ interfacial pinning potential. In the other state, due to
the influence of the tensile stress, the molecules are stretched
in the normal direction and are not able to adjust as well to the
corrugated substrate potential, resulting in a weaker pinning
potential and, during slip, a smaller shear stress. We assume
that, in a circular strip at the boundary of the contact region,
where the normal stress is tensile, the rubber is in the second
state. In this case the elastic energy release rate, as the contact
radius decreases (from the JKR limit), will be smaller, and it
is necessary to go to higher slip velocities (where the frictional
shear stress is likely to be larger), in order for the contribution
to the energy release rate from the elastic energy stored in the
shear deformation to be so large as to reduce the contact radius.

5. Summary and conclusion

In this paper we have discussed how the area of real contact A
depends on the load or normal force FN as two elastic solids
with randomly rough surfaces are squeezed together. We have
shown that, even when the adhesive interaction between the
solids is taken into account, one expects in most cases that
A ∝ FN and the pressure distribution in the contact regions is
independent of the load. We believe that this is the explanation
for why the friction force is proportional to the load in most
cases (Amonton’s friction law).

For very smooth surfaces or for elastically soft solids such
as rubber or gelatin, the area of real contact may approach the
nominal contact area. In this case the friction force will depend
on the detailed pressure dependence of the frictional shear
stress σf. We have performed extensive MD calculations for
metal–polymer and polymer–polymer sliding interfaces and
always found a nearly linear dependence of σf on the squeezing
pressure p0: σf = β(pad + p0) where the adhesional pressure
pad depends on the energetic and geometrical corrugation of
the atomic (or molecular) layers at the interface where the
slip occurs. Typically pad ≈ 1 GPa so that σf will depend
on the pressure p0 essentially only for squeezing pressures
of the order of 100 MPa or more. The friction force Ff =
A0σf = A0β(pad + p0) = β(A0 pad + FN) will, in general,
depend nonlinearly on the load because the nominal contact
area A0 will, in most cases, increase nonlinearly with the load,
e.g. it is given by the JKR theory when an elastic lens is
squeezed against a flat. Thus, when the adhesion is so strong
as to result in nearly complete contact in the apparent contact
area, the friction force will depend nonlinearly on the load and
Amonton’s friction law will not hold.

During sliding deformation energy, due to the frictional
shear stress, will be stored in the asperity contact regions.
This may result in a decrease in the adhesive contact area:
reducing the contact area results in a reduced adhesive bonding
energy A�γ , but this is compensated by a reduction in the
stored elastic energy. That is, the contact area is determined
by minimizing the total energy and since the elastic energy
increases during slip because of the shear deformations of the
solids in the vicinity of the contact regions, the contact area will
change in such a way as to minimize the total energy (elastic
plus adhesive energies). Since the elastic energy in an asperity
contact region is stored in the volume element ∼d3 (where d is
the linear size of the contact region) and the interfacial binding
energy is proportional to the contact area ∼d2, one expects
that, as the frictional shear stress increases, the contact area
will decrease towards the non-adhesive limit, as indeed found
by Vorvolakos and Chaudhury [21] (see section 4) for a lens
in contact with a flat. This will, of course, also influence the
friction force.
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Appendix A

Asperity contact theories, such as the Greenwood–Williamson
[24] theory and the theory of Bush et al [25], are often used
to motivate that for randomly rough surfaces the area of real
contact A depends linearly on the load FN. However, for
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Figure A.1. A rigid solid with a flat surface squeezed against an
elastic solid with roughness on two length scales: small bumps on
large bumps. In (a) it is assumed that only the small bumps undergo
elastic deformation while in (b) both the small bumps and the large
bump undergo elastic deformation. In asperity contact theories it is
usually assumed that only the smallest bumps undergo elastic
deformation. The correct picture, where bumps on all length scales
can deform elastically, gives drastically different contact mechanics
when roughness occurs on many different length scales.

surfaces with roughness over many different length scales,
as is almost always the case in real systems, these theories
predict that the linear relation between A and FN holds over
an extremely small range of squeezing forces. However,
numerical simulations have shown that A and FN are linearly
related until the contact area becomes of the order of 10% of
the nominal contact area A0. Thus, the asperity contact models
mentioned above fail qualitatively in most cases of practical
interest. In particular, these theories cannot be used to explain
(assuming purely elastic deformations) why the friction force
usually is proportional to the load (Amonton’s friction law).

That asperity contact theories fail to predict that the area
of real contact is proportional to the load for a physically
meaningful range of loads has recently been demonstrated by
detailed calculations presented by Carbone et al [26]. The
basic physics is easy to understand. Randomly rough surfaces
with roughness on many different length scales have roughness
of the type ‘bumps-on-top-of-bumps-on-top-of-bumps-· · ·’. In
figure A.1 we illustrate this with a surface with roughness on
two length scales consisting of small bumps on top of large
bumps (only one large bump is shown in the figure). In the
asperity contact models it is assumed that only the smallest
bumps deform elastically as in figure A.1(a). However, in
reality the small bumps will exert a force on the big bumps
which also will deform as in A.1(b). This will result in more
small bumps being in contact with the upper surface and a
larger contact area and, more important, a contact area which
increases linearly with the squeezing force until the area of
real contact reaches ∼10% of the nominal contact area. On
the contrary, for surfaces with roughness on many different
length scales, the asperity contact models fail to predict a

linear relation between A and FN already for extremely small
contact area. In particular, if surface roughness occurs the
whole way down to the nanoscale, then the largest physical
compression of the two surfaces will be of the order of a
nanometer (which will flatten out the nanobump which first
comes into contact with the (flat) bottom surface of the block)
and the area of real contact at this point will be extremely small.
It is this very same effect which gives rise to a qualitatively
wrong relation between the (average) interfacial separation ū
and the load [27]: for asperity contact models p ∼ exp(−bū2)

while the exact result (for large separation) is exponential,
p ∼ exp(−aū).

The contact mechanics model of Persson [28] includes
the elastic coupling between the asperities and predicts, in
accordance with numerical studies, that the contact area varies
linearly with the load until A becomes of the order of 10% of
the nominal contact area; see figure 10 in [29] for an example.

Appendix B

Assume that a constant shear stress σ‖ acts in the x direction
on the surface of a semi-infinite elastic solid within the circular
region r < r0 and area A0 = πr 2

0 . This will result in a
surface displacement field u(x). We define the center-of-mass
displacement

u‖ = 1

A0

∫
A0

d2x ux(x).

The total shear force F‖ = A0σ‖. We define the spring constant
k‖ so that

k‖u‖ = F‖.

Using the theory of elasticity we get [30]

ux(x) = 1

2πG

∫
A0

d2x ′ σ‖
(

1 − ν

|x − x′| + ν(x − x ′)2

|x − x′|3
)

and

u‖ = 1

2πG

1

A0
σ‖

∫
A0

d2x d2x ′
(

1 − ν

|x − x′| + ν(x − x ′)2

|x − x′|3
)

where G is the shear modulus and ν the Poisson ratio. We
introduce polar coordinates and write x = r0ξ cos φ, y =
r0ξ sin φ and similar for x′. We get

u‖ = 1

2πG

1

A0
σ‖r 3

0

∫ 1

0
dξ dξ ′ξξ ′

∫ 2π

0
dφ dφ′

×
(

1 − ν

s
+ ν(ξ cos φ − ξ ′ cos φ′)2

s3

)
(B.1)

where

s = [
(ξ cos φ − ξ ′ cos φ′)2 + (ξ sin φ − ξ ′ sin φ′)2

]1/2
.

The integrals in (B.1) can easily be performed numerically and
using that G = E/(2(1 + ν)) = E∗(1 − ν)/2 we can write

u‖ = 1

r0 E∗
A + Bν

1 − ν
F‖
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where A ≈ 0.55 and B ≈ −0.28. Thus

k = r0 E∗ 1 − ν

A + Bν
. (B.2)

It is interesting to note that, if instead of a constant shear
stress within the area A0, one assumes a constant displacement
(which requires a tangential stress ∼ [1 − (r/r0)

2]−1/2), then
the spring constant [30]

k = r0 E∗ 4(1 − ν)

2 − ν
. (B.3)

For rubber (ν ≈ 0.5) we get k ≈ 1.22r0 E∗ and k ≈ 1.33r0 E∗
from (B.2) and (B.3), respectively. The stored elastic energy
when u‖ = δ is

U1 = 1
2 kδ2 = αE∗δ2r0

with

α = 1 − ν

2(A + Bν)
.

For rubber ν ≈ 0.5 giving α ≈ 0.67.
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